Revista de Economia e Sociologia Rural
https://www.revistasober.org/article/doi/10.1590/1806-9479.2021.233206
Revista de Economia e Sociologia Rural
Original Article

Socioeconomic conditions on poverty levels a case study: Central Java Province and Yogyakarta in 2016

Condições socioeconômicas sobre os níveis de pobreza, um estudo de caso: províncias de Java Central e Yogyakarta em 2016

Achmad Tjachja Nugraha; Gunawan Prayitno; Listio Nandhiko; Ahmad Riswan Nasution

Downloads: 0
Views: 276

Abstract

Abstract: This study aims to analyze how the influence of infrastructure availability, socioeconomic conditions, and the effect of location on poverty levels. The descriptive analysis is used to give a general description of poverty by using thematic charts and maps. The poverty map is analyzed by spatial autocorrelation of poverty levels by using a Moran Scatterplot and the Local Indicators of Spatial Association (LISA) Map. The results of the study indicate the existence of spatial linkages to poverty. The Increasing of other variables outside the model in neighboring regions will increase the level of poverty in a region. The infrastructures of road extension, clean water infrastructure, economic growth, quality of education, and health have a significant influence on the level of poverty, while the percentage of satisfactory sanitation did not demonstrate to affect the significant effect on poverty. The conclusion is that the level of poverty in the provinces of Central Java and Yogyakarta has an irregular distribution and a clustered spatial pattern.

Keywords

level of poverty, spatial model, spatial regression analysis

Resumo

Resumo: Este estudo tem como objetivo analisar como a disponibilidade de infraestrutura, as condições socioeconômicas e o efeito da localização influenciam nos níveis de pobreza. A análise descritiva é usada para dar uma descrição geral da pobreza usando cartas e mapas temáticos. O mapa da pobreza é analisado por autocorrelação espacial dos níveis de pobreza, pelo uso de um gráfico de dispersão de Moran e do Mapa de Indicadores Locais de Associação Espacial (LISA). Os resultados do estudo indicam a existência de ligações espaciais à pobreza. O aumento de outras variáveis ​​fora do modelo em regiões vizinhas aumentará o nível de pobreza em uma região. A infraestrutura da extensão das estradas, infraestrutura de água potável, crescimento econômico, qualidade da educação e saúde têm influência significativa no nível de pobreza, embora a porcentagem de saneamento decente não tenha demonstrado afetar o efeito significativo sobre a pobreza. A conclusão é que o nível de pobreza nas províncias de Java Central e Yogyakarta tem uma distribuição desigual e um padrão espacial agrupado.
 

Palavras-chave

nível de pobreza, modelo espacial, análise de regressão espacial

Referências

Aklilu Zewdie, M., Aidi, M., & Sartono, B. (2015). Spatial econometric model of poverty in Java Island. American Journal of Theoretical and Applied Statistics, 4(6), 420. http://dx.doi.org/10.11648/j.ajtas.20150406.11

Anselin, L. (1988). Spatial econometrics: methods and models. Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-015-7799-1.

Anselin, L. (1993). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. Morgantown, WV: Regional Research Institute, West Virginia, University Morgantown.

Anselin, L. (1995). Local Indicators of Spatial Association – LISA. Geographical Analysis, 27(2), 93-115. http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x

Anselin, L. (2005). Exploring spatial data with GeoDa: a workbook. Urbana: Center for Spatially Integrated Social Science, University of Illinois.

Arka, S., & Wirawan, I. M. T. (2015). Analisis Pengaruh Pendidikan, PBRB Per Kapita dan Tingkat Pengangguran Terhadap Jumlah Penduduk Miskin Provinsi Bali. EP Unud, 4(5), 546–560. Retrieved in 2013, August 15, from https://ojs.unud.ac.id/index.php/eep/article/view/12339/9117

Astuti, R. R. (2015). Analisis Pengaruh Jumlah Penduduk, Pertumbuhan Ekonomi, Pendidikan dan Kesehatan terhadap Jumlah Penduduk Miskin di Indonesia tahun 2004-2012. Yogyakarta: Universitas Negeri Yogyakarta.

Azzainuri, M. D. (2014). Determinan Ketimpangan Pembangunan Ekonomi Antarprovinsi di Indonesia Tahun 2006-2012. Indonesia: Sekolah Tinggi Ilmu Statistik.

Badan Pusat Statistik – BPS. (2017). Multiyears data (Stattistic). Indonesia.

Central Bureau of Statistics. (2016). Statistik Indonesia 2016 [Statistic of Indonesia 2016]. Indonesia.

Central Java Province (2014). Rencana Pembangunan Jangka Menengah Daerah (RPJMD) Provinsi Jawa Tengah Tahun 2013-2018. Badan Perencanaan Pembangunan Daerah.

Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. London: Pion.

Geary, R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5(3), 115-146. http://dx.doi.org/10.2307/2986645

Groce, N., Kembhavi, G., Wirz, S., Lang, R., Trani, J.-F., & Kett, M. (2011). Poverty and disability: a critical review of the literature in low and middle-income countries. SSRN. http://dx.doi.org/10.2139/ssrn.3398431

Higazi, S. F., Abdel-H., D., & Al-Oulfi, S. A. (2013). Application of spatial regression models to income poverty ratios in middle delta contiguous Counties in Egypt. Journal Statistic Operation Research, 9(1), 93-110.

Himawan, A., & Bagus, S. (2016, October). Ini Beda Proyek Infrastruktur di Jawa dan Luar Jawa. Suara.com.

Humantito, I. J. (2009). Analisis Keterkaitan Ketersediaan Infrastruktur terhadap Kemiskinan di Indonesia. Indonesia: Universitas Indonesia.

Kuncoro, S. (2014). Analisis Pengaruh Pertumbuhan Ekonomi, Tingkat Pengangguran dan Pendidikan Terhadap Tingkat Kemiskinan di Provinsi Jawa Timur Tahun 2009-2011. Indonesia: Universitas Muhammadiyah Surakarta.

Laswinia, V. D., & Chamid, M. S. (2016). Analisis Pola Hubungan Persentase Penduduk dan Sosial di Indonesia Menggunakan Regresi Spasial. Jurnal Sains Dan Seni ITS, 5(2), 1-6. http://dx.doi.org/10.5152/jaem.2014.16769

Liu, Q. Q., Yu, M., & Wang, X. L. (2015). Poverty reduction within the framework of SDGs and Post-2015 Development Agenda. Advances in Climate Change Research, 6(1), 67-73. http://dx.doi.org/10.1016/j.accre.2015.09.004

Malik, H. (2017). Analisis Determinan Ketimpangan Pembangunan Ekonomi menurut Kawasan di Indonesia Tahun 2007-2015. Sekolah Tinggi Ilmu Statistik.

Moran, P. A. P. (1948). The Interpretation of Statistical Maps. Journal of the Royal Statistical Society. Series B. Methodological, 10(2), 243-251. http://dx.doi.org/10.1111/j.2517-6161.1948.tb00012.x

Nugraha, A. T., Prayitno, G., Situmorang, M. E., & Nasution, A. (2020). The role of infrastructure in economic growth and income inequality in Indonesia. Economia e Sociologia, 13(1), 102-115. http://dx.doi.org/10.14254/2071-789X.2020/13-1/7

Pérez de la Fuente, B. (2016). Economic growth and poverty reduction in a rapidly changing World. European Economy. Economic Brief, 19(October), 2-17. http://dx.doi.org/10.2765/730208

Prabandari, A., Ari, I. R., & Hariyani, S. (2017). Pemodelan Spasial Water Poverty Index dengan Infrastruktur dan Kondisi Sosial Pada Kelurahan Cemorokandang Kota Malang. Brawijya University.

Prayitno, G., Sari, N., & Putri, I. K. (2019). Social capital in poverty alleviation through Pro-Poor Tourism concept in Slum Area (Case Study: Kelurahan Jodipan, Malang City). International Journal of GEOMATE, 16(55), 131-137. http://dx.doi.org/10.21660/2019.55.37152

Tambunan, T. (2000). Perekonomian Indonesia: teori, temuan, dan empiris. Indonesia: Ghalia.

Thongdara, R., Samarakoon, L., Shrestha, R. P., & Ranamukhaarachchi, S. L. (2012). Using GIS and spatial statistics to target poverty and improve poverty alleviation programs: a case study in Northeast Thailand. Applied Spatial Analysis and Policy, 5(2), 157-182. http://dx.doi.org/10.1007/s12061-011-9066-8

Townsend, P. (1962). The meaning of poverty. The British Journal of Sociology, 13(3), 210-227. http://dx.doi.org/10.2307/587266

Ustama, D. D. (2010). Peranan Pendidikan Dalam Pengentasan Kemiskinan. Dialogue, 6(1), 1-12.

World Bank. (1994). World Development report 1994 infrastructure for development. Oxford: Oxford University Press.

Yogyakarta Province Government. (2016). Rencana Kerja Pembangunan Daerah Daerah Istimewa Yogyakarta (RKPD DIY).

Zhao, R., Tian, Y., Lei, A., Boadu, F., & Ren, Z. (2019). The effect of local government debt on regional economic growth in China: a nonlinear relationship approach. Sustainability, 11(11), 1-22. http://dx.doi.org/10.3390/su11113065

Zhao, X., Zheng, Y., Huang, X., Kwan, M. P., & Zhao, Y. (2017). The effect of urbanization and farmland transfer on the spatial patterns of non-grain farmland in China. Sustainability, 9(8), 1438. http://dx.doi.org/10.3390/su9081438
 


Submetido em:
21/01/2020

Aceito em:
17/02/2021

60c38db1a9539516a12c4b75 resr Articles
Links & Downloads

resr

Share this page
Page Sections